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We report laboratory and numerical experiments with the convective circulation that
develops in a long channel driven by heating and cooling through opposite halves
of the horizontal base. The problem is similar to that posed by Stommel (Proc. Natl
Acad. Sci. vol. 48, 1962, p. 766) and Rossby (Deep-Sea Res. vol. 12, 1965, p. 9; Tellus
vol. 50, 1998, p. 242), where flow forced by a linear temperature variation along the
ocean surface or the base of a tank presented a demonstration of the smallness of
sinking regions in the meridional overturning circulation of the oceans. In contrast
to the previous experiments, we use small aspect ratio, larger Rayleigh numbers,
piecewise uniform boundary conditions and an imposed input heat flux. The flow
is characterized by a vigorous overturning circulation cell filling the box length and
depth. A stable thermocline forms above the cooled base and is advected over the
heated part of the base, where it is eroded from below by small-scale three-dimensional
convection, forming a ‘convective mixed layer’. At the endwall, the convective mixing
is overshadowed by a narrow but turbulent plume rising through the full depth of the
box. The return flow along the top of the box is turbulent with large slowly migrating
eddies, and occupies approximately a third of the total depth. Theoretical scaling laws
give temperature differences, thermocline thickness and velocities that are in good
agreement with the experimental data and two-dimensional numerical solutions. The
measured and computed density structure is largely similar to the thermocline and
abyssal stratification in the oceans.

1. Introduction
The flows resulting from a horizontal difference in temperature or heat flux at a

single horizontal boundary of a fluid have become known as ‘horizontal convection’.
The flows are very different from the more familiar Rayleigh–Bénard and Grashof
forms of convection that carry heat between two horizontal or vertical boundaries.
In horizontal convection, the heat flux does not necessarily have to be transported
through the fluid depth. Indeed, it has been thought that only a slow diffusively-driven
circulation can develop near the level of the heat source and sink (Jeffreys 1925; Huang
1999), although laboratory experiments with a horizontal temperature gradient have
demonstrated a circulation filling the depth of the box (Rossby 1965). Horizontal
convection has received relatively little attention, particularly from experimentalists,
but may have much to teach us about the dynamics of the deep overturning circulation
of the oceans and the role of surface buoyancy fluxes.

A simple conceptual model for the meridional overturning component of the ocean
circulation is the convective flow driven by a horizontal surface temperature gradient
(Stommel 1962). The meridional overturning circulation (also referred to as the global
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thermohaline circulation) of the oceans advects warm subtropical surface waters to
high latitudes, where it cools and sinks. In the present pattern of circulation, the dense
cold (and sufficiently saline) water sinks in confined regions at high latitudes to form
‘Deep’ and ‘Bottom’ waters (see e.g. Warren 1981). It is hypothesized that there is a
slow, possibly basin-wide, upwelling to the surface to match the poleward mass flux,
with the loop closed by a zonal average return flow toward the equator at depths below
the thermocline. The strength of the circulation and the heat transport must depend
on the rate of vertical diffusion of heat (Munk 1966; Bryan & Cox 1967; Munk &
Wunsch 1998; Wunsch & Ferrari 2004). In the oceans the diffusion is believed to
be caused by breaking internal waves and turbulent mixing processes (energized by
winds and tides, Munk & Wunsch 1998), which act to increase the potential energy
of the water column. The resulting heat flux carried by the overturning circulation
has a significant role in the climate system, and changes in this circulation have been
implicated as a cause of climate variability on decadal to millennial timescales.

A non-rotating two-dimensional form of this flow was realized in laboratory
experiments (Rossby 1965) and in related numerical solutions (Rossby 1998), where a
linear temperature gradient was imposed along the base of a water tank. The resulting
flow exhibited an extreme asymmetry between the size of the sinking and rising legs
of the convective overturning, with upward motion being confined to a narrow plume
against the endwall above the hot end of the base, where the water has the lowest
density in the box. In those experiments and computations, the ratio of box height to
length was 1:2.5 and 1:1, respectively, while the horizontal Rayleigh number (based
on the box length) ranged up to 108. The flow was laminar. In the work reported here,
we extend experiments and computed solutions to larger Rayleigh numbers and a
smaller aspect ratio, but with thermal boundary conditions that are more convenient
to achieve in the laboratory. We observe two new features of the flow: vertical mixing
by small-scale convection, and turbulent shear flow in both the plume and the weakly
stratified return flow of the interior.

Rossby (1965) concluded that the interior water is warmed by advection of heat
from, and cooled by diffusion to, the forcing boundary. The resulting asymmetry in
the flow was attributed to the relative efficiencies of the two heat transfer processes,
although Winton (1995) and Marotzke & Scott (1999) pointed out that the vertical
advection acts on a very small vertical temperature gradient while the diffusion acts
on a relatively large stable gradient, and therefore different efficiencies do not in
themselves explain the smallness of the sinking regions and much larger area required
for the diffusive transport. We add that the transport of heat both to and from the
boundary, under the conditions studied, was by diffusion into a laminar boundary
layer. Nevertheless, the upwelling plume ensures that the interior temperature far from
the forcing boundary is very close to that of the water against the base at the hot end
of the box, and these are the highest temperatures in the box. In the ocean context (i.e.
turning the experiment upside down, adding rotation and using a stress-free surface),
Winton (1995) used a general circulation model (GCM) to show that solutions having
narrow sinking regions correspond to minimum potential energy, maximum downward
diffusion of heat, maximum baroclinic horizontal pressure gradient and maximal over-
turning strength compared to less asymmetric states carrying the same heat flux.

The laboratory flows involve a balance over most of the horizontal area, excepting
the small area of upwelling, between the downward diffusive transport of heat in the
cold thermocline (i.e. upward growth of the thermocline) and the slow downward
advection of warm water. The lateral flow in the boundary layer is characterized by
a buoyancy-friction momentum balance. Thus, the flow is forced (both in terms of
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momentum and energy) entirely by buoyancy, with the strength of the circulation
dependent on both the boundary temperature difference (or heat flux) and the vertical
diffusivity. These dynamics in the experimental flow are fundamentally different from
those suggested by Munk & Wunsch (1998) and Huang (1999) for the oceanic
overturning (see also the review by Wunsch & Ferrari 2004): these authors argue that
the primary energy source for the meridional overturning is the turbulent mechanical
energy, which in turn, is derived from external sources (tidal and wind-driven motion),
rather than the surface buoyancy fluxes. It was also concluded that the heat transport
is an ‘incidental’ consequence of the overturning – a conclusion that appears to leave
only the surface wind stress to provide the driving force that gives momentum to
the mean overturning. An alternative dynamic is that interior mixing in the oceans
(whether energized by winds, tides or buoyancy fluxes) again governs the uptake
of buoyancy and generation of available potential energy, while the overturning
circulation is generated by the buoyancy forces produced by surface heat and water
fluxes. It is therefore important to examine the flow dynamics in the purely buoyancy-
driven case. Also of interest is the added possibility that a significant portion of the
interior turbulent mixing may be generated by the surface buoyancy fluxes.

Rossby (1965) derived a boundary-layer scaling analysis of non-rotating ‘horizontal
convection’ and predicted that the Nusselt number Nu is proportional to the Rayleigh
number Ra according to Nu ∼ Ra1/5 (where Ra is based on the applied end-to-end tem-
perature difference). The predicted boundary-layer thickness h varies as Ra−1/5. These
scaling results were consistent with the laboratory data and two-dimensional numerical
solutions for large Prandtl number, Rayleigh numbers up to 108 and an aspect ratio of
one (Rossby 1998) (although they may not be valid for the case of a stress-free forcing
boundary; W. R. Young, personal communication). Paparella & Young (2002) solved
numerically the two-dimensional flow for a minimum top boundary temperature at the
centre of the box and a maximum temperature above both ends, giving a downwelling
plume at the centre. They examined the flow at higher Rayleigh numbers, smaller
Prandtl numbers and an aspect ratio of 1:4, and found a transition to unsteady
two-dimensional eddying flow (at a Rayleigh number which increased with Prandtl
number). Paparella & Young (2002) also predicted that the box-averaged rate of
viscous dissipation ε per unit mass is given by the expression

ε =

(
κg

Dρ0

)
(ρ

b
− ρ

t
), (1.1)

where κ is the molecular diffusivity for density that controls the uptake of buoyancy
at the boundary, ρ

b
and ρ

t
are the horizontally averaged densities at the bottom

and top boundaries, respectively, ρ0 is a reference density, and D is the box depth.
From this they inferred that the flow must be non-turbulent for vanishing molecular
diffusivity (at a fixed Prandtl number). The same conclusion will apply for very large
box depth.

The dynamics and pattern of ocean circulation are strongly influenced by planetary
rotation and surface wind stress. This makes the flow three-dimensional, largely geo-
strophic, and introduces the process of vertical Ekman pumping. Scaling laws assum-
ing geostrophic balance (Bryan & Cox 1967; Park & Bryan 2000) are expected to
be more appropriate than the buoyancy–viscous scaling, and give a different depen-
dence of heat flux on vertical diffusivity. Ekman pumping may overshadow diffusion
within some part of the surface boundary layer. However, the fundamental point is
that both the rotating and non-rotating models predict that the strength of the
overturning depends on the thermal forcing and the vertical diffusivity, and they pose
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the common question of whether external energy supply (beyond the potential energy
available from buoyancy fluxes) is necessary to provide enhanced diffusion in the deep
interior and to uptake the buoyancy from the surface.

Investigation of the rotating case has been confined largely to general circulation
models (e.g. Bryan & Cox 1967; Bryan 1987; Colin de Verdiere 1988; Wright & Stocker
1991; Winton 1995; Marotzke 1997; Park & Bryan 2000, 2001), in which convective
mixing must be crudely parameterized by using convective adjustment or enhanced
vertical diffusion schemes, and in which there are uncertainties resulting from spatial
resolution and effective numerical diffusivity. Laboratory experiments with rotating
horizontal convection include the case with heating and cooling through vertical
endwalls of a long tank (Condie & Ivey 1988; Condie & Griffiths 1989) – this is a sys-
tem in which there is no region of stabilizing boundary flux, the convection is actively
forced through the full depth of the box, and the flow is symmetric. In another exper-
iment, a heating flux was applied over a fifth of the base in a strip along one end of a
rectangular box while cooling with a prescribed temperature was applied over a fifth
of the base at the opposite end (Park & Whitehead 1999). The thickness of the thermal
boundary layer and the meridional temperature difference in the flow were functions of
the imposed heat flux and Coriolis parameter (i.e. the Rayleigh and Ekman numbers),
and were consistent with the predictions of the Bryan & Cox (1967) scaling laws.

In this paper we return to the non-rotating case and report new experimental
observations of turbulent flow in the endwall plume and the interior. The experiments
also show how small-scale three-dimensional convection can cause vertical mixing near
the forcing surface and the formation of a mixed layer within the two-dimensional
large-scale circulation. As far as we are aware, this is the first report of convective
mixing and turbulent interior motion in horizontal convection. These observations
involve new conditions, particularly a small depth-to-length aspect ratio for the box
(D/L = 0.16), approximately piecewise uniform boundary conditions on the base,
and a range of Rayleigh numbers larger than those used previously (we use 6.5 ×
1012 � RaF � 6.84 × 1014, where RaF is based on the applied input heat flux and box
length). These changes are likely to create conditions more favourable to small-scale
instability compared with those employed by Rossby (1965). Another difference is that
we impose a heat flux. However, our additional runs with an imposed temperature
difference reveal the same behaviour. We also present complementary two-dimensional
numerical solutions obtained from a finite-volume code.

The problem and governing equations are defined in § 2, where we also give a
boundary-layer analysis and scaling laws for the flow. The laboratory apparatus and
methods are described in § 3 and the results given in § 4. In § 5 we present a very
simple model for the development of the convective mixed layer. Two-dimensional
numerical solutions are given in § 6. Our conclusions and some implications for the
oceans are discussed in § 7.

2. Theoretical analysis
2.1. Governing equations

We consider a convective flow in a long rectangular box (figure 1). A uniform heat
flux per unit area, F

T
(in Wm−2), is imposed over the left-hand half of the base and

a uniform temperature is imposed over the right-hand half of the base. Instead of
applying a temperature gradient along the base, we impose a uniform flux boundary
condition at the heated end because it is experimentally more convenient (a linear
temperature gradient is difficult to achieve over a distance of order 1 m) and allows
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Figure 1. Sketch of flow in a vertical plane through the box. There is a slow downwelling
velocity w throughout most of the interior, and a boundary layer of depth h across the cooled
part of the base. FT is the heat flux per unit area imposed over the left-hand half of the base
and Tc is the temperature on the cooled part of the base (L/2 <x � L). The resulting interior
temperature is T0. The solid curve denotes the boundaries of the convective mixed layer and
the upwelling plume (§ 4.2).

a more accurate determination of the heat flux into the fluid. All other boundaries
are assumed to be perfect insulators and all boundary conditions are constant. In
thermal equilibrium, heat is removed through the cooled half of the base at a rate
that is equal to the total heat input at the heated end. Thus, the imposed flux controls
the strength of convection and the magnitude of the temperature differences in the
flow, whereas the temperature imposed over the cold half of the base controls the
absolute temperature in the box.

The governing equations and a boundary-layer analysis of the problem are similar
to that given by Rossby (1965) for a linear imposed temperature variation along the
base. For this study, we change the boundary conditions and use a scaling based on
the imposed heat flux. The flow is assumed to be Boussinesq and two-dimensional.
Velocities in the horizontal (x) and vertical (z) directions are denoted by u and w,
respectively. The equations for momentum, mass conservation, heat and density are:

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= − 1

ρ0

∂p

∂x
+ ν∇2u, (2.1)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= − 1

ρ0

∂p

∂z
+ ν∇2w − ρ

ρ0

g, (2.2)

∂u

∂x
+

∂w

∂z
= 0, (2.3)

∂T

∂t
+ u

∂T

∂x
+ w

∂T

∂z
= κ

T
∇2T , (2.4)

ρ

ρ0

= 1 − α (T − T0) . (2.5)

Here, ρ, p, κ
T
, α, ν and T are the density, pressure, thermal diffusivity, thermal

expansion coefficient, kinematic viscosity and temperature of the fluid, respectively. A
subscript 0 denotes reference quantities and ∇2 = ∂2/∂x2 + ∂2/∂z2. Impermeable and
no-slip velocity conditions are applied at all boundaries:

u = w = 0 at x = 0, L, (2.6)

u = w = 0 at z = 0, D. (2.7)
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The walls and lid are assumed perfectly insulating so that:

∂T

∂x
= 0 at x = 0, L, (2.8)

∂T

∂z
= 0 at z = D, (2.9)

F
T

= κ
T
ρ0cp

∂T

∂z
at z = 0, 0 < x < L/2, (2.10)

T = Tc at z = 0, L/2 < x < L, (2.11)

where cp is the specific heat capacity. Introducing a streamfunction such that
u = ∂ψ/∂z and w = −∂ψ/∂x, cross-differentiating (2.1) and (2.2), and substituting
(2.5) yields the vorticity equation

∂ζ

∂t
+ u

∂ζ

∂x
+ w

∂ζ

∂z
= ν∇2ζ − αg

∂T

∂x
, (2.12)

where ζ = ∇2ψ is the z-component of vorticity.
We define the dimensionless variables

x̂ =
x

L
, ẑ =

z

D
, û =

uL

κ
T

, ŵ =
wL2

κ
T
D

, ζ̂ =
ζLD

κ
T

t̂ =
tκ

T

L2
, T̂ =

T

	T
, (2.13)

where ζ̂ = (∂û/∂ẑ) − A2(∂ŵ/∂x̂), and 	T = F
T
L/ρ0cpκ

T
is a scale for temperature

differences based on the input flux and thermal conduction over a length L. The
dimensionless vorticity and temperature equations become

∂ζ̂

∂t̂
+ û

∂ζ̂

∂x̂
+ ŵ

∂ζ̂

∂ẑ
= Pr∇̂2ζ̂ − PrRaF A

∂T̂

∂x̂
(2.14)

and

∂T̂

∂t̂
+ û

∂T̂

∂x̂
+ ŵ

∂T̂

∂ẑ
= ∇̂2T̂ , (2.15)

where

∇̂2 =
∂2

∂x̂2
+

1

A2

∂2

∂ẑ2

and

RaF =
gαF

T
L4

ρ0cpκ2
T
ν

, Pr =
ν

κ
T

, A =
D

L
. (2.16)

The dimensionless numbers defined in (2.16) are the flux Rayleigh number, Prandtl
number and aspect ratio, respectively. In both the numerical solutions and the
laboratory experiments we control RaF by selecting the total heat input and hence
the heat flux F

T
.

2.2. Boundary-layer scaling analysis

In a steady-state flow, vertical conduction above the cooled base is balanced by
both the vertical and the horizontal advection (as these terms are of the same order
in (2.15)). We assume that thermal and velocity boundary layers of the same scale
thickness h are established at the base of the box (figure 1). This assumption relies on
the no-slip boundary condition. We note that W. R. Young (personal communication)
has shown that Rossby’s scaling (along with that given here) is not expected to hold
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when convection is forced at a stress-free surface, where the momentum boundary-
layer thickness scales with the depth of the box.

Using (2.3), (2.4) and taking ∂/∂x � ∂/∂z (or A2 � 1 in (2.15)), the boundary-layer
balance can be expressed as

u ∼ wL

h
∼ κ

T
L

h2
. (2.17)

For Pr � 1, (2.12) and (2.17) lead to a balance between viscous stresses and buoyancy
in the horizontal boundary-layer flow:

αgδT

(
h

L

)
∼ νu

h2
, (2.18)

where δT is the difference between the maximum and minimum temperatures along
the length of the box given the imposed heat flux. This temperature difference is also
representative of the vertical temperature difference across the boundary layer above
the cooled half of the base. Conservation of heat in the boundary layer implies that

ρ0cpδT uh ∼ F
T
L. (2.19)

We solve (2.17), (2.18) and (2.19) to obtain the following expressions for the charac-
teristic temperature anomaly δT , boundary-layer thickness h, boundary-layer velocity
u and vertical velocity w, which in normalized form become:

δT

	T
∼ Ra−1/6

F , (2.20)

h

L
∼ Ra−1/6

F , (2.21)

uL

κ
T

∼ Ra1/3
F , (2.22)

wL

κ
T

∼ Ra1/6
F , (2.23)

and (2.20) can be rewritten as the Nusselt number

Nu ∼ Ra1/6
F , (2.24)

where Nu= F
T
L/ρ0cpκ

T
δT ≡ 	T/δT is the heat flux relative to that due to conduction

along the length of the tank. The volume flux per unit width in the two-dimensional
overturning flow scales as V ∼ uh and hence V ∼ κ

T
Ra1/6

F . Note that, if we define the
usual horizontal Rayleigh number as Ra = gαδT L3/νκ

T
, then RaF =NuRa and our

result is the same as that obtained by Rossby (1965, 1998) for the case of convection
in a square container (A = 1) forced by an imposed temperature difference δT (i.e.
Nu ∼ Ra1/5 and V ∼ κ

T
Ra1/5). Scaling results for other related cases are discussed

in § 7.

3. Experiments
3.1. Apparatus

We used an acrylic tank having inner dimensions L =1.25 m long, W = 0.15m wide
and H =0.2 m deep (figure 2). In order to minimize heat loss from the tank to its
surroundings, the sidewalls were double-glazed. The interior and exterior walls were
20 mm and 3 mm thick, respectively, and the 18 mm cavity between the walls was filled
with argon. The sidewalls extended downwards to surround the base, heating mat and
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Working fluid (de-aired water)

Heating mat

copper base polystyrene insulation thermistor access

water heat exchanger

1.25 m

0.2 m

PumpPower meter
Power
supply

a.c.

Temperature
controller

Cold bath

heating mat

Water heat exchanger

Figure 2. The experimental arrangement. The electric heating mat is pressed against the
copper base.

heat exchanger. The entire tank was thermally insulated with expanded polystyrene
foam of thicknesses 150 mm below the base, 96 mm on the endwalls, 50 mm on the
sidewalls and 100 mm on the lid. The sidewall polystyrene could be removed for flow-
visualization purposes.

A 10 mm thick sheet of copper formed the base of the tank. A 600 mm × 150 mm
electric heating mat was clamped against the left-hand half of the copper base above
a 27 mm sheet of ceramic insulation and a 20 mm sheet of acrylic, the latter bolted to
the base of the walls. The heating mat provided total heat fluxes (F

T
WL/2) between 10

and 374 W uniformly distributed over its area (i.e. 111 � F
T

� 4156 W m−2). A 600 mm
long recirculating water heat exchanger was attached beneath the other half of the
base. This heat exchanger consisted of channels through which cold water was pumped
from a constant temperature bath, with the recirculating water in the channels directly
contacting the overlying copper base. With this design, we achieved a temperature
boundary condition that was very close to uniform and constant. The coolant was
held at 16 ◦C by a proportional controller and the upper surface of the base was close
to 16.5 ◦C, depending only very weakly on the heat flux. A 50 mm insulating spacer
between the heating mat and cold heat exchanger reduced ‘short-circuiting’ of heat
flow directly along the copper base. A steady two-dimensional conduction solution
(see Carslaw & Jaeger 1959) shows the amount of heat transported directly along
the copper base is less than 0.3% of the total heat input in each experiment. Apart
from the unavoidable no-slip velocity boundary condition on the two sidewalls, all
boundary conditions were independent of distance across the box, thus forcing a flow
as two-dimensional as possible. In a few additional runs, which we observed in only
qualitative ways, the heating mat was replaced with a heat exchanger recirculating
warm water, but otherwise identical to that under the cooled half of the base. The
experiments were run with an imposed temperature difference (16 ◦C at the cool half
and approximately 40 ◦C at the warm half).

An acrylic lid in contact with the water sealed the top of the tank. Along the lid
was a series of holes with vertical tubes extending upwards through the polystyrene
insulation (figure 2). Thermistor access was possible through five tubes along the
centreline at x = 0.1, 0.3, 0.625, 0.95 and 1.15 m (measured from the left-hand endwall)
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and a second line of tubes offset 25 mm from the centreline, at x =0.3, 0.625 and
0.95 m. A further three tubes at x = 0.12, 0.595 and 1.13 m on the centreline were
used for adding dye streaks. The tubes also accommodated changes in volume of the
working fluid owing to thermal expansion during the approach to thermal equilibrium.

Eight fast-response thermistors were attached to a rack which could be either
traversed vertically to obtain temperature profiles at five positions along the tank or
carefully positioned for simultaneous time records at eight fixed points. A traversing
speed of 6.1 mm s−1 was used. A further two thermistors were embedded on the
centreline of the copper base, close to its upper surface and 0.1 m from each endwall.
The traversing mechanism and data acquisition were all controlled by computer. Time
records from stationary thermistors were acquired from each sensor at approximately
0.1 samples/s and data for vertical profiles was taken at 60 samples/s. The approach
to the equilibrium state was monitored with the thermistors held stationary.

3.2. Procedure and measurements

De-aired water was used as the working fluid to ensure that no air bubbles appeared
in the tank. Once set up, the system evolved to a thermal steady state in which the
convective flux leaving through the cold plate matched the imposed heat flux (less
sidewall heat losses). Thus, the flux through the cooled half of the base was also
imposed by the heat input flux. In some runs, the working fluid was initially at room
temperature when the heating mat, cooling unit and pump were switched on. In other
cases, the heating mat (or hot water heat exchanger) was switched on first in order
to bring the water close to the estimated equilibrium temperature before the cooling
was turned on. This latter method gave a much shorter equilibration time (∼6–7 h
instead of 25 h).

As an example of the equilibrated flow, a cold bath temperature of 16 ◦C and
an input heating power of 140 W (F

T
= 1556 Wm−2) led to a steady state in which

temperatures in the upper three-quarters of the body of the tank were within 0.1 ◦ of
32.8 ◦C, whereas the temperatures taken from the thermistors embedded within the
warm and cold ends of the copper base were 36.3 ◦C and 16.7 ◦C, respectively. The
flux Rayleigh number for this case was of order 1014. We note that, in this example,
the range of temperatures in the flow (16–33 ◦C) corresponds to a thermal expansion
coefficient ranging from 1.6 × 10−4 K−1 to 3.3 × 10−4 K−1 (Ruddick & Shirtcliffe 1979),
a variation that has not been allowed for in the scaling analysis, but which may be
significant and can be investigated using the numerical solutions. In order to minimize
the fractional variation of the expansion coefficient within the tank, the cold plate
temperature was set well above 10 ◦C. We base the Rayleigh and Prandtl numbers on
the diffusivity and viscosity evaluated at the mean interior temperature of each run.

A vertical temperature profile was used to determine the thickness of the thermal
boundary layer. The thermistors were traversed downwards from the lid to 1 mm above
the base, with a reading every 0.1 mm. Windowed-averages based on five readings
were used to reduce instrumental noise, giving a spatial resolution of ∼0.5 mm. We
define the boundary-layer thickness to be the height above the base at which the
difference from the temperature at mid-height is 5% of the maximum temperature
anomaly in that same profile. In the case of the smallest input heat power (of 10 W),
an estimate for the height of the boundary layer was determined from the temperature
profiles by eye.

A shadowgraph set-up was used to give qualitative images of the flow and to
measure the flow velocities in the boundary layer. Potassium permanganate crystals
were dropped into the tank to produce vertical dyelines. The subsequent deformation
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on the shadowgraph screen was recorded on video for later analysis. A number of
frames were digitized at specified times. A comparison of frames was used to make
accurate measurements of the horizontal displacement of the dyelines, and hence to
determine the maximum horizontal velocity in the boundary layer. In other runs,
dye tracer was released continuously from syringe tubes near the base and at either
the centre or cold (right-hand) end of the box. This tracer was advected with the
bottom boundary-layer flow, upwelled in the turbulent plume and travelled along the
top of the tank in the plume outflow. Vertical profiles of the horizontal velocity were
obtained by measuring the horizontal displacement of an initially vertical line of fine
particles, released as a precipitate from a vertical length of solder wire placed in the
centre of the tank (Honji, Taneda & Tatsuno 1980).

Images of the convection were also obtained using the ‘synthetic schlieren’ technique
(Sutherland et al. 1999; Dalziel, Hughes & Sutherland 2000), which allowed us to
classify density gradients as either stable or unstable. However, the quantitative use
of this technique was limited owing to the severe refraction of light in the strong
temperature gradients in the bottom boundary layer.

A calibration run was carried out to measure the heat loss coefficient from the
insulated box and the heat loss (in watts) was found to be 0.7425 × (T

tank
− T

lab
).

From this we infer a heat loss in all experiments of between 2 and 6% of the total
flux applied to the heating mat (except for the very small input heat fluxes of 10
and 30 W, in which there was an estimated gain of 2 and 0.86 W respectively, from
the surroundings). This small loss was the difference between the heat input and
withdrawal fluxes. The heat gained from the room by the thin boundary layer above
the cooled base (>16 ◦C) was negligible because it intersected the walls over an area
less than 4% of the surface area of the box. When the sidewall foam was removed for
long periods (10–15 min), no temperature perturbation was seen in the records from
the thermistors at any location in the tank.

4. Results
4.1. Adjustment to thermal equilibrium

The evolution of the convection to a steady state was sensitive to the initial and
boundary conditions. In most runs, the whole volume of the box overturned as a
single cell throughout the equilibration process. However, in experiments where the
final equilibrium temperature was less than the initial temperature, a transient two-
layer configuration was observed. Under these conditions there was an initial net
heat loss from the tank and the cold boundary-layer water did not gain sufficient
buoyancy (as it passed along the heated portion of the base) to rise as a plume to
the top of the tank. Instead, it returned to the cold end at an intermediate depth
above the bottom boundary layer. Two vertically stacked convection cells formed,
circulating in the same rotational sense and each occupying the full length of the
tank. There was a strong circulation in the lower cell, while the upper cell was much
weaker, presumably driven by a small horizontal temperature gradient resulting from
heat transfer between the cells.

In each case, the flow in the two-cell mode slowly evolved, with the rising plume
penetrating higher until (except for the smallest heat fluxes) it eventually reached
the top of the box (figure 3). We hypothesize that the evolution was governed by
upward diffusion of heat through the depth of the upper cell, or at least through a
thick gradient region. For a depth of order D/2 this implies an evolution timescale of
order 1 day. Although this time is also comparable to that observed for temperature
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(a)

(b)

(c)

Figure 3. A sequence of photographs of the initial evolution in an experiment with a flux
of 140W applied to the heating mat. The initial temperature of the water was 41.5 ◦C. The
final equilibrium temperature in the interior was 32.4 ◦C. Photographs show only the left-hand
half of the box. The vertical tube at x = 0.65 m released a small amount of dye before each
photograph was taken. Times of the photographs (after heating and cooling were started) are
(a) 1 h 52 min, (b) 8 h 34 min, (c) 24 h 17min. In (a), the convection was restricted to a lower
region of depth 32mm, (b) shows both the original dye (now light grey) which had been mixed
throughout the lower cell and newly released dye which was carried by the plume to a height
of 44 mm. In (c), the plume rises slowly through the full depth of the tank and its outflow is
very broad. The flow continued to evolve until the plume was fast and narrow, and until the
outflow occupied one third of the tank, as in figure 5.

equilibration in the single-cell mode of convection (§ 3.2), that time is set by the
energy required to heat the whole mass of the working fluid to the final temperature,
divided by the net rate of heat input (the difference between the heat input and the
heat output through the cooled portion of the base). A similar diffusive adjustment
was hypothesized in a related experiment (Pierce & Rhines 1996) in which a zero net
buoyancy flux at the surface was achieved using salt solution and fresh-water volume
sources. For the two smallest heat fluxes, the plume continued to rise through only
part of the depth, and we attribute this to stabilizing effects of sidewall heat gain.
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Figure 4. A synthetic schlieren image showing the full depth and the left-hand half of the
tank over the heated base. The two vertical lines are at 200 mm intervals. The scale shows
vertical refractive index gradients (light shades unstable, dark shades stable, neutral gradients
in grey). Turbulent convection is seen at the left-hand end, and convection from the base
erodes the stable bottom boundary layer as it flows from right to left.

The delayed equilibration due to the two-cell mode was avoided by initiating
runs with colder water (usually at room temperature), so that a net heat input was
required to reach the equilibrium temperature. However, our method (mentioned
in § 3.2) of first heating the water using the heating part of the base, and turning
on the cooling over the other half of the base shortly before the water reached the
expected equilibration temperature, served well to avoid both of the slow equilibration
pathways.

4.2. The thermally equilibrated flow

In the thermally equilibrated state, a strongly stable boundary layer covered the cooled
half of the base. As this cold layer flowed across the heated half of the base, the stable
temperature gradient was eroded from beneath, not by conduction but by convection
driven by the bottom heating. The small-scale convection produced a mixed layer,
as seen in the schlieren and dye images (figures 4 and 5). This convective vertical
mixing began 50 to 100 mm from the centre of the tank and deepened with distance
from the onset. The flow in all cases adjusted such that the mixed-layer thickness
reached the full depth of the stable cold boundary layer within about 50 mm from the
left-hand end of the box (see schlieren image, figure 4). Within about 30–50 mm from
the left-hand endwall, the mixed layer fed into a narrow rising plume that hugged
the endwall. Thus, the whole of the boundary layer flux first entered the mixed layer
before reaching the plume.

The upwelling plume was strongly confined to the endwall, as in the experiments of
Rossby (1965). The inflow to the base of the plume was characterized by small-scale
convective eddies, which we expect to carry no net volume flux. Through most of its
height, however, the plume exhibited turbulence as a result of a strong mean shear
between the upwelling water and the relatively stationary interior. The Reynolds
number in this region, based on plume width and mean vertical velocity, was around
500 for most runs. The dominant shear-generated eddies had scales comparable to
the plume width, and the qualitative appearance was that of a turbulent buoyant
plume (as seen in many types of experiment with a small source, except that in the
horizontal convection tank a significant volume flux was present at the ‘source’).
These eddies were much larger than the small buoyant elements carried up from the
bottom boundary layer.

At the top of the tank the outflow from the plume (figure 5) contained eddies larger
than those in the plume. The perturbations of largest scale travelled slowly along the
box, but were not sufficiently coherent to be tracked by eye for more than about
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(a)

(b)

Figure 5. Photographs showing transport of dye tracer in an experiment with input heating
power of 270W. The vertical dye tube seen in the right-hand side of (a) was in the centre of the
tank (at x =0.625m) and released a constant stream of dye into the bottom boundary layer.
The tank was back lit with a diffusing screen placed on the far sidewall. (a) The left-hand
half of the tank. The dye reveals vertical mixing through the depth of the convective mixed
layer, penetration of the overlying stable boundary layer by the small-scale convection, shear
instability in the vertical plume against the endwall, and the plume outflow at the top. (b)
A close up of the plume and its outflow, covering approximately 35 cm of the tank from the
left-hand endwall. The image in (b) is taken at a later time than that in (a). Both images show
the full depth of the tank.

0.2 m. Dye tracer also revealed smaller three-dimensional motions in this region. The
outflow immediately adjacent to the plume occupied approximately a fifth of the box
height D, but within 0.1 to 0.2 m of the endwall the outflow (measured from either
horizontal velocity or tracer) thickened to a depth of approximately D/3. This re-
mained uniform along the remainder of the length of the box. Downwelling motion in
the interior was very slow, and was difficult to measure in the presence of the eddying
and apparently weakly turbulent horizontal flow. After long periods of continuous
tracer release, the dye tracer showed downward mixing, and revealed a region of
stronger downwelling at the far end of the box. The tracer also showed a tendency
to avoid accumulation near the mid-depth line in the interior at large times. Tracer
was recycled toward and into the upwelling plume at depths above the boundary
layer. Eventually, the dye also entered the boundary layer and was recycled through
the plume. These observations imply the presence of turbulent entrainment into the
plume through at least the lower half of the box depth.

Closer examination of the small-scale convection at the base (including viewing
from above) revealed coherent rolls aligned with the boundary-layer flow for a short
distance (about 50 mm) along the heated base, beginning 50 to 100 mm from the centre
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of the box. Similar streamwise convection rolls have been observed in experiments
with shear flow in a sloping plane layer with a heated base (Hart 1971) (though in
that case there was no stable overlying density gradient as encountered in the present
flow). Such rolls will not be captured in two-dimensional numerical solutions (see § 6),
where the flow is assumed independent of the cross-stream direction. They are also
not visible to optical methods that integrate refractive index variations along light
paths through the width of the tank. The rolls were short and gave way to fully three-
dimensional convection. Over most of the heated base the small-scale convection had
a turbulent appearance and consisted of small plumes and eddies that penetrated
a short distance into the overlying stable gradient of the boundary layer before
rebounding. As best we could determine, the vertical profile of horizontal velocity
within the turbulent mixed layer indicated zero mean shear. Between 50 and 100 mm
from the left-hand endwall, the small-scale mixing penetrated to the full depth of the
boundary layer before being swept upward with the mean flow in the larger ascending
plume.

The shadowgraph and dye tracer observations for runs with an imposed temperature
difference showed no obvious difference in circulation pattern or flow details, apart
from an onset of small-scale convection in the boundary layer a few centimetres closer
to the centre of the box. This system too was left to reach a state of zero net heat
flux, and the difference between the cases of imposed flux and imposed temperature
difference is only that in one case the input flux was spatially uniform, whereas in the
other the boundary temperature of the heated portion of the base was uniform.

4.3. Temperature profiles and Rayleigh-number dependence

Typical vertical temperature profiles under equilibrated conditions for three different
input heat fluxes are shown in figure 6. Above the thermal boundary layer, the
interior fluid was close to isothermal. The boundary layer was of remarkably uniform
thickness along the whole length of the tank (except close to the left-hand endwall).
The horizontal temperature gradient was weak within the boundary layer along the
length of the cold plate, large in the lower (heated) portion of the boundary layer over
the heated base between x = L/4 and L/2, and again quite small within the warm
convective mixed layer at x < L/4. The existence of the convective mixed layer is
evident from the temperature records, since the profiles at x = 0.1 and 0.3 m above the
hot plate show a region of unstable temperature gradient (these measurements are not
averaged over time), and the unstable region deepens towards the left-hand endwall.
The highest temperature measured in the boundary layer (at the lowest measure-
ment point, 1 mm above the base, and x = 0.1 m) was very close to – but, importantly,
slightly greater than – the average interior temperature: for example, with heat input
of 140 W, an estimate of the temperature excess providing buoyancy to the upwelling
plume (as measured by the temperature inversion in the profile of figure 6a) was
0.34 ◦C. The plume outflow at the top of the box had a small thermal signature (a
temperature excess � 0.1 ◦C throughout the top 40–50 mm). This signal decreased
with distance along the box. For most of the depth of the box (between z = 30 and
180 mm) the vertical temperature gradients were extremely small (of order 0.1 ◦C over
150 mm).

At larger Rayleigh numbers (achieved by increasing the power supplied to the
heating mat), the overall thicknesses of the thermal boundary layer and the bottom
convective layer were smaller, the circulation was stronger and there were larger
temperature differences and velocities in the boundary layer. For the purpose of
calculating the Nusselt number (2.24) for each experiment, δT was defined as the
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Figure 6. Profiles of the normalized temperature T ∗ through the boundary layer at x = 0.1,
0.3, 0.625 and 1.15m, where T ∗ =(T − Tref)/(Tint − Tref), Tref is measured at x =1.15m and
1mm above the base for each heat flux, and Tint is the temperature at mid-depth for each
profile. The solid line, dashed line and dotted line are from experiments with input heat fluxes
of 100, 140 and 271W, and corresponding RaF of 1.05 × 1014, 1.75 × 1014 and 4.57 × 1014,
respectively. Note that the vertical axis corresponds to only half the box depth.
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Figure 7. (a) Normalized heat flux Nu, (b) boundary layer velocity UL/κ , and (c) boundary
layer thickness h/L plotted as functions of RaF . The solid and dashed lines are best fits
of the predicted power laws (2.24, 2.22 and 2.21) to the laboratory data (�) and numerical
data (�), respectively. The solid lines are Nu = 0.81587Ra

1/6
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1/3
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F . The laboratory data point with lowest Rayleigh number corresponds to a heat

input of 10W and has a much greater uncertainty than the other data. Results from the
numerical solutions � are also shown. The result from the additional numerical run using a
temperature dependent expansion coefficient is shown by �.

temperature difference between x = 0.1 and 1.15 m at a height 1 mm above the base.
The temperature profiles were used to estimate the boundary-layer thickness h in
(2.21) and dye streaks were used to measure the maximum velocity u for (2.22).

When making a comparison between the data and the scaling theory, the relevant
molecular quantities are those for water. These properties were evaluated at the mean
temperature of the interior region of the circulation. When cast in dimensionless form,
the measurements agree well with the scaling analysis (figure 7).

5. A model for the convective mixed layer
The convective mixed layer (CML) above the heated half of the base is embedded

within an otherwise stable temperature gradient established by conduction (figure 8).
This part of the flow was steady on long timescales, with variability confined to the
time and length scales (∼10 s, ∼10 mm) of the small cells, plumes and eddies that
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Figure 8. The convective mixed layer. The vertical scale is exaggerated.

were identified in the CML and the (somewhat larger) eddy time and length scales
(∼100 s, ∼30–100 mm) in the upwelling endwall plume and plume outflow region.

A simple theoretical description of the CML is instructive. We denote the height
of the CML by η (figure 8) and make the following assumptions:

(i) The boundary layer is very thin compared to its length and everywhere slowly
varying in the horizontal;

(ii) η = 0 at x = x∗ � L/2 and η → D at x = 0, where x∗ is the position at which
instability first occurs, potentially estimated from a local Rayleigh number criterion;

(iii) The horizontal velocity within the boundary layer can be characterized by ū,
a velocity averaged over the CML in both x and z (the vanishing velocity at the
left-hand endwall is not included in this calculation);

(iv) The CML is vertically well mixed so that its temperature Tm is a function of
x alone;

(v) The CML deepens only by ‘encroachment’ due to warming and not due to
inertial entrainment processes (i.e. there is a continuous density profile, with no density
step or inversion; Manins & Turner 1978);

(vi) Heat conduction from the convecting layer into the overlying stable region
can be neglected;

(vii) The temperature distribution in the stable cold boundary layer (outside the
CML) is established over the cooling half of the base before being advected to the
left, and can be described by a simple analytic expression, Tb(z) (given below) for
z >η(x).

An approximation for the outer stable temperature profile is found using the steady
form of the advection–diffusion equation (2.4) with ∂/∂x � ∂/∂z (or from (2.15) with
A � 1):

ū
∂Tb

∂x
+ w

∂Tb

∂z
= κ

T

∂2Tb

∂z2
, (5.1)

where boundary conditions are

Tb(z) = T0 as z → ∞, (5.2)

Tb(z) = Tc at z = 0. (5.3)

In order to find a highly idealized, horizontally uniform solution in a thin boundary
layer above the cold plate (as in the thermocline solution given by Pedlosky 1979,
chap. 6), we set ∂T /∂x = 0 everywhere in (5.1). This is the vertical balance previously
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Figure 9. Normalized depth, η/D, of the convective mixed layer over the heated half of
the base, as a function of horizontal distance from the left-hand endwall for input heat flux
140W. �, measured depth from shadowgraph; �, depth estimated from measured temperature
profiles; —, mixed layer model (5.8) using a stable boundary layer of height h =5.2 mm. Note
that the vertical axis corresponds to only half of the depth, and that the flow is towards
decreasing x.

expressed in (2.17), where the assumption is that most of the heat carried downward
to the boundary by vertical advection is removed by conduction. The solution is

Tb(z) = T0 − δT exp
(−z

h

)
, (5.4)

where δT = T0 − Tc and h = −κ
T
/w. Conservation of heat in the horizontal flow over

the heating plate leads to the integral constraint,∫ η

0

[Tm(x) − Tc] dz −
∫ η

0

[Tb(z) − Tc] dz =
F

T

ρcp

(x − x∗)

ū
. (5.5)

Substitution of (5.4) into (5.5) and integration over the depth of the CML gives

ηTm(x) − ηT0 − hδT exp
(−η

h

)
+ hδT =

F
T

ρcp

(x − x∗)

ū
. (5.6)

Continuity of temperature and density at the top of the CML, at z = η, (which follows
from the ‘encroachment’ assumption) imply

Tm = Tb(η) = T0 − δT exp
(−η

h

)
. (5.7)

Substitution into (5.6), and making use of our previous scaling for δT , h and ū

((2.20)–(2.22)), yields

k
(x − x∗)

L
= 1 −

(
1 +

η

h

)
exp

(−η

h

)
, (5.8)

where k is a constant of order one that is evaluated by applying the condition η =D

at x = 0 (thus assuming that the mixing penetrates the full depth of the box only at
the end and not at larger values of x).

The solution (5.8) for the CML height is shown in figure 9 for the case x∗ =L/2
and h = 5.2 mm (as appropriate for RaF = 1.55 × 1014), where it is compared with
the height measured from the shadowgraph. From x/L = 0.5 to x/L ≈ 0.3, the rate
of convective layer deepening decreases with distance from the onset of small-scale
convection at x∗. This reflects the uniform boundary heat flux being mixed into a
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deepening layer. The rate of deepening with distance increases again closer to the
endwall, where the CML is encroaching into a much smaller overlying density gradient
at the top of the conductive stable boundary layer. The solution (despite the highly
simplified formulation of the problem) adequately describes the shape of the CML and
the way in which the mixing rapidly deepens close to the end of the box. We conclude
that the near-steady large-scale horizontal flow suppresses convective instability in
the region of destabilizing buoyancy flux through advection of the stable boundary-
layer density stratification, from the region of stabilizing buoyancy flux.

6. Numerical solutions
6.1. Solution methods

The governing equations (2.1)–(2.5) were solved numerically using the CFD package
FLUENT (version 6.1), which employs a finite-volume method. We used the two-
dimensional implicit segregated solver (with the PRESTO! interpolation scheme for
pressure, the PISO algorithm for pressure–velocity coupling and the QUICK scheme
for discretization of the momentum and energy equations). This discretization scheme
is third-order and provides a robust solver that reduces artificial numerical diffusion
(Leonard 1984). The solver is non-hydrostatic and we do not use a turbulence closure
model for sub-gridscale processes. This is in contrast to most ocean GCMs, which
typically use a hydrostatic approximation and parameterize the convective processes
by a ‘convective adjustment’ scheme (e.g. Winton 1995). In order to verify the suit-
ability and accuracy of the schemes for our problem, we first repeated the numerical
experiments with convection in a square box reported by Rossby (1998). In these
verification runs, the grid spacing used was similar to that employed in the original
work. Viscosity and diffusivity were varied (because FLUENT solves the governing
equations in dimensional form) to reproduce Pr= 10 and Rayleigh numbers across
the range 103 < Ra < 108. When re-cast in dimensionless form, the results were in
excellent agreement with those obtained by Rossby (1998).

The grid used for solutions with the smaller aspect ratio and larger Rayleigh
numbers of our experiments consisted of a coarse array of 10 mm × 10 mm cells in
the interior and a fine boundary-layer mesh in regions with small-scale activity or
large temperature gradients. The boundary-layer meshes along the lid and base were
identical and consisted of 12 rows each. The row adjacent to each boundary had cells
of height 0.5 mm and the cell height increased by a factor of 1.3 for each row further
from the boundary, giving an overall boundary-layer mesh of height 37.2 mm. On
the sidewall at the heated end of the tank there was a boundary-layer mesh 3 cells
(approximately 20 mm) wide. The no-slip condition was applied on all boundaries
and there was no heat flux through the endwalls or the lid. This two-dimensional
solution does not allow for heat loss or no-slip conditions at the long (front and back)
sidewalls. Water properties were generally set as constants and evaluated at the mean
interior temperature at thermal equilibrium in the equivalent laboratory experiments.
The heat fluxes and water properties used are shown in table 1.

Runs were carried out with four different fluxes applied to the heating boundary
(0 < x < 0.6 m), FT = 778, 1111, 1556 and 3000 Wm−2, and the temperature on the
cold boundary (0.65 < x < 1.25 m) was set to 16 ◦C. For runs 1 and 2 the working
fluid was initially at 20 ◦C and there was no motion in the interior. Runs 3 and 4 were
initialized with the converged solution from the next smaller heat flux (runs 2 and 3,
respectively). The solution was advanced in time using a second-order time-stepping
scheme until convergence was obtained. The solution convergence was monitored
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Run FT α(×10−4) ρ0 κ
T
(×10−7) cp ν(×10−7)

(W m−2) (K−1) (kg m−3) (m2 s−1) (J kg−1 K−1) (m2 s−1)

1 778 2.5954 996.95 1.438 4178.7 8.836
2 1111 2.8932 996.11 1.452 4178.0 8.258
3 1556 3.2394 994.94 1.474 4177.6 7.627
4 3000 3.8220 990.58 1.544 4178.6 6.109

Table 1. Values of heat fluxes and water properties used in the numerical experiments with
constant molecular properties. Properties derived from Ruddick & Shirtcliffe (1979) and
polynomial interpolation of values given in Batchelor (1967, Appendix 1).

using a time series of the average temperature in the tank and also the total heat flux
leaving through the cooled plate. The solution was judged to have reached thermal
equilibrium when the net heat flux into the tank was less than 3% of the heat flux
applied to the heating boundary, i.e.

∫ 1.25

0.65

κ
T
ρ0 cp

∂T

∂y

∣∣∣∣
y=0

dx � 0.97 × (0.6 × F
T
).

Time steps were sufficiently small such that the Courant–Friedrichs–Lewy condition
for numerical stability was satisfied. Runs 1 and 2 used an initial time step of 1 s
and this was halved as velocities increased. In runs 3 and 4 a time step of 0.25 s was
used throughout the evolution. After the solution reached thermal equilibrium, the
unsteady formulation of the problem revealed short-period fluctuations in the flow.

In order to examine the solution dependence on the grid spacing, the mesh was
refined using a hanging node algorithm (which splits each rectangular grid cell into
four equal area cells). The computational time for convergence became extremely
large with the finer mesh. However, the solutions were very similar to those obtained
on the standard grid, although the refined grid solutions showed more structure in
the unsteady small-scale convection ‘rolls’ over the heated base and in the eddying
motions in the plume.

6.2. Solutions

The two-dimensional numerical solutions show excellent agreement with the labora-
tory observations. Figure 10 shows an instantaneous solution from run 3, while
figure 11 shows the mean flow and temperature fields. The mean fields were formed
by averaging 720 solutions taken at 5 s intervals over a 1 h period. Vertical profiles of
the horizontal velocity are shown in figure 12 where the profiles at the left and centre
are compared with the measured profiles from laboratory experiments. In a region
near the plume, the horizontal velocity (figures 10a and 11a) is directed away from
the plume throughout the top third of the box. Below this, the flow is mainly to the
left (into the plume), relatively slowly in the interior and much faster in the boundary
layer (the bottom 25 mm). There is a small mean flow away from the plume
immediately above the boundary layer (figures 10a and 11a), possibly indicating
that a thin uppermost part of the stratified boundary-layer flow toward the plume is
turned back to the right instead of entering the plume. Horizontal velocities of both
signs generally increase with proximity to the left-hand end of the box. There is a weak
enhancement of the downwelling velocity at the far end of the box. The temperature
gradient in the interior (figure 10d) is small but positive (a variation of 0.12 ◦C over



Horizontal convection 201

(a)

(b)

(c)
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Figure 10. A snapshot in time of the numerical solution for run 3 (see table 1) with a total
applied heat flux of 1556Wm−2 and cold plate temperature of 16 ◦C. This run is equivalent
to the laboratory experiments with power 140W applied to the heating mat. Contours of:
(a) horizontal velocity u, (b) vertical velocity v, (c) streamfunction ψ and (d) temperature T .
In (a) and (b), solid lines show positive and zero velocities, dashed lines are negative velocities.
The contour interval is 0.6mm s−1 in (a), 0.3mm s−1 in (b) and 0.015 kg s−1 in (c). In (d),
the solid lines are contours with interval 3 ◦C and the dashed lines are the 0.01 ◦C contours
between 38.85 and 38.95 ◦C.

the upper three-quarters of the depth). These results confirm significant entrainment
into the plume from above the boundary layer, despite the two-dimensional constraint.

There is a substantial degree of unsteadiness in the flow details in figure 10, and
even the 1-hour average (figure 11) still shows some small unsteadiness in parts of the
plume outflow where the vertical velocity is directed upward (marked by the contour
closest to the centre of the box). In the interior of the box, the solutions show a
series of large disturbances, causing alternating upward and downward velocities
superimposed on a small mean downwelling flow (figure 10b). Referring back to the
experimental observations of overturning eddies and mixing, we conclude that these
structures are more eddy-like than wave-like. An animation of the solution shows the
eddies moving to the right and decaying in amplitude. In run 3, there are typically
six eddies, approximately equally spaced along the length of the box, and each eddy
takes approximately 1200 s to travel from the heated end to the cooled end.

Above the heated boundary, the two-dimensional solution contains a regular set
of perturbations having small length scales. We interpret these as convection ‘rolls’
(which in the two-dimensional solution must be aligned in the cross-stream direction,
hence in the direction normal to the rolls observed in the experiments). The rolls are
characterized by a positive correlation between the temperatures and vertical velocity
component. The height to which the perturbations extend increases towards the left-
hand end of the box. The variation in horizontal velocity through the boundary layer
also indicates a shear that will cause the rolls to rotate in an anticlockwise direction



202 J. C. Mullarney, R. W. Griffiths and G. O. Hughes

(a)

(b)

(c)

(d)

Figure 11. Time-averaged flow and temperature fields for the same run as figure 10 (run 3,
table 1). Contours of: (a) horizontal velocity u, (b) vertical velocity v, (c) streamfunction ψ
and (d) temperature T . The contour intervals are the same as in figure 10.
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Figure 12. Vertical profiles of horizontal velocity: �, numerical results; �, corresponding
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while they are being advected to the left. The scale of the convection rolls was
dependent upon the cell size, with finer meshes giving a larger number of narrower
and taller rolls. However, the large computational time required for convergence
with finer meshes makes a full study of this effect impractical. In any case, the
two-dimensionality of the solution is unrealistic in this region of the flow. The rolls
disappear altogether in the time-averaged solution. When animated, the solutions also
show these rolls forming coherent parcels of warm water that move upward in the
upwelling plume. These are characterized by a timescale much smaller than that of
the larger eddies in the outflow.

The flux Rayleigh number, Nusselt number, boundary-layer thickness and
boundary-layer velocity for the computed solutions are included in figure 7 for
comparison with the laboratory results. The values were calculated in a manner
similar to that used for the laboratory experiments (§ 3.2). The Nusselt number was
based on the temperature difference between the nodes closest to (x, y) = (0.1, 0.001) m
and (1.15, 0.001) m. For the boundary-layer velocity, we use the maximum horizontal
velocity close to the centre of the box (x = 0.62 m). The top of the thermal boundary
layer generally lay between two nodes in the vertical, and a linear interpolation
between these nodes was used to estimate the thickness. The results agree well with
the scaling laws computed in § 2.2.

Nusselt numbers for the numerical solutions are approximately 25–40% lower than
the laboratory values, reflecting greater temperature differences δT in the former. This
difference may be a result of the unrealistic rendition of the three-dimensional small-
scale convection in the boundary layer (less vigorous convection, leading to a larger
temperature difference for the applied heat flux) or the imperfect wall insulation in
the laboratory. If the Nusselt number is calculated using the maximum temperature
difference along the base in the numerical solutions (i.e. between x = 0 and x = 1.25m),
the Nusselt number is further decreased by up to 25%.

When our results are cast in the form Nu= CRa1/5, the value of the constant C for
the fit to the numerical data (using the maximum temperature difference along the
base for δT ) is 0.41. This is similar to, but slightly greater than, the value of 0.35
obtained by Rossby, indicating that the results are not sensitive to aspect ratio and
bottom boundary conditions. The value of the constant from the fit to our experi-
mental data is 0.78 which is a factor of 2 larger than the experimental value (C = 0.4)
obtained by Rossby. We expect that the greater values for the constants in our
study are due largely to the convective mixing near the boundary, but note that our
experimental value will be larger owing in part to the measurement of δt between
locations 0.1 m from the ends of the tank.

In one additional run, we used an accurate representation of the nonlinear equation
of state for freshwater, which gives an increase in the expansion coefficient with
increasing temperature, as expected in the laboratory experiment. Characteristics of
the solution are plotted in figure 7 and are similar to the previous results. Likewise
contour plots of temperature, streamfunction and velocity components show no signi-
ficant difference from those in figure 10.

7. Discussion and conclusions
The circulation forced by differential heating of a horizontal boundary at smaller

aspect ratios and larger Rayleigh numbers than previously available remains highly
asymmetric. The flow is characterized by a tightly confined plume at one end of the
box, broadly distributed vertical advection in the interior, and enhanced return flow
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against the opposite endwall. A stably stratified thermal boundary layer is maintained
by diffusion over the region of stabilizing boundary flux, and buoyancy forces a flow
along the boundary toward the region of destabilizing boundary flux. This advection
of stratification tends to suppress convective instability. Both laboratory measurements
and numerical solutions confirm the validity of buoyancy–viscous scaling laws for the
dimensionless heat flux, the boundary-layer thickness and horizontal velocities in the
equilibrium flow (with no-slip boundaries). Hence, the heat flux and the diffusivity
in the boundary layer govern the rate of overturning. The volume flux per unit
width through the boundary layer is V ∼ 0.87(κ

T
L)2/3(gαF

T
/ρ0cP

ν)1/6 and the tem-
perature difference required to accommodate the heat flux is δT ∼ 1.2κ−2/3

T
(ν/gα)1/6

L1/3(F
T
/ρ0cP

)5/6. (These compare with V ∼ κ4/5
T

νδT 1/5 and F
T

∼ κ4/5
T

ν−1/5δT 6/5, where
we omit other variables, for the case of an imposed temperature difference; Rossby
1965, 1998.)

In transient cases, irrespective of the initial conditions, the flow evolves toward an
equilibrium state in which the plume retains just enough buoyancy to carry away from
the forcing boundary all of the mass flux driven along the horizontal boundary layer,
as required by continuity. The transient flow also involves a diffusive adjustment (if
required) far from the forcing boundary, which ensures that the plume eventually
penetrates through the full depth of the box.

In the experiments, the expansion coefficient of water varies with temperature and,
although the net boundary heat flux is zero, buoyancy is not conserved and the
cooling and heating buoyancy fluxes are not equal. However, the numerical solutions
with a constant or variable thermal expansion coefficient indicate that the variable
expansion coefficient has no significant effects. In all cases, once in equilibrium, there
is zero net heat flux into the box. The flow appears to be insensitive to the bottom
thermal boundary conditions (of flux or temperature, or piecewise or linear variation).

The turbulent vertical plume carries water through the depth of the box, entrain-
ing interior water, and maintaining a small but dynamically important vertical tem-
perature gradient in the box interior. Similar entrainment and recirculation in the
interior was observed in the solutal buoyancy experiments of Pierce & Rhines (1996,
1997). The eddying behaviour in the unsteady plume outflow involved periodic eddy
formation a short distance away from the plume and on a timescale much longer than
that of the eddies in the plume. This contrasts with the case computed by Paparella &
Young (2002), where eddies were formed in the plume (in that case located in the
centre of the box) before they were carried away in the outflow.

Another new observation is the region of small-scale three-dimensional thermal
convection embedded within the otherwise stable thermal boundary layer of the over-
turning circulation. This convection forms a mixed layer (the CML) over the region of
destabilizing boundary forcing. A convectively unstable boundary layer also exists in
our numerical solutions, but these solutions allow only two-dimensional rolls aligned
across the mean flow. The CML deepens with distance from the onset of small-scale
convection in a manner consistent with encroachment into the overlying gradient as a
result of warming (the physical equivalent of ‘convective adjustment’ in GCMs). The
horizontal mass flux in the CML feeds directly into, and becomes, the vertical plume
against the endwall. For each applied heat flux, the system adjusts so that vertical
mixing breaks through the thermocline only at the end of the box. The full horizontal
volume flux carried in the thermocline and plume passes through the mixed layer
close to the end of the box. The plume location can be altered by a sufficiently large
extremum in boundary temperature or heat flux remote from the endwalls (Pierce &
Rhines 1996; Paparella & Young 2002).
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The result that a deep and turbulent overturning (rather than a shallow and creeping
flow) can be generated and maintained by thermal forcing at the surface is at odds
with some interpretations of Sandström’s theorem (see Jeffreys 1925; Huang 1999).
However, the theorem actually says nothing about the kinetic energy (or the stability)
of the flow. This theorem neglects diffusion and the flow is therefore described by the
theoretical prediction for the volume-averaged rate of viscous dissipation (equation
(1.1); Paparella & Young 2002) in the limit of vanishing diffusivity (i.e. ε → 0).
Evaluation of the identity (1.1) for the actual laboratory conditions is straightforward.
In the experiments with heat flux F

T
= 1556 Wm−2, the horizontally averaged tem-

perature was 32.4 ◦C at the top and 21 ◦C at the base. Taking the interior (maximum)
value of the expansion coefficient α =3.3 × 10−4 K−1, the molecular thermal diffusivity
κ = κ

T
= 1.4 × 10−7 m2 s−1 and g = 9.8 m2 s−1, the box-averaged dissipation per unit

mass becomes ε = 2.6 × 10−8 m2 s−3. Taken on its own, this value may appear to
be very small. We ask, however, whether the energy supplied by the buoyancy flux
can sustain mechanical mixing in the interior. The vigour of turbulent mixing in a
stratified fluid is measured by the quantity ε/νN2

i , where Ni =[(−g/ρ0) ∂ρ/∂z]1/2 is
the local buoyancy frequency: values greater than 10 imply weak turbulent mixing
whereas values greater than 103 indicate strong turbulence (Barry et al. 2001). For
values less that order 1, mixing is expected to become increasingly intermittent. The
interior temperature gradient of 0.12 ◦C over 0.15 m gives Ni =5.1 × 10−2 s−1. Taking
the viscosity of water at the interior temperature ν = 7.8×10−7 m2 s−1 and the average
dissipation rate from above gives ε/νN2

i = 13. The local dissipation rate ε need not be
uniform. However, we have no further information on its spatial variability other than
the expectation that it is largest in the plume. Hence, we conclude by observation
that the above average value admits conditions of ‘weak’ mixing in interior flow
in horizontal convection. Our qualitative observations of tracer behaviour indicate
mixing much greater than could be achieved by molecular diffusion.

In considering the relevance of the buoyancy-driven flow to the meridional
overturning circulation of the oceans (the MOC), we first recall the absence in the
computations and experiments of geostrophic balance, mean flows due to surface wind
stress, internal mixing by wind and tides. Hence, the model is governed by a buoyancy–
friction balance in the boundary layer, the largest scales are two-dimensional, and
there is no wind stress or vertical Ekman pumping. In contrast, the MOC is likely
to be described by geostrophic scaling (Bryan & Cox 1967; Park & Whitehead 1999;
Park & Bryan 2000), the flow is three-dimensional and the upper boundary layer may
be strongly influenced by effects of wind stress. Despite these differences, however,
the non-rotating convection can instruct us on some of the fundamental dynamics of
the zonally averaged overturning in a closed single hemisphere ocean basin. Effects
of rotation are not important in a first approximation because lateral transport in the
deep ocean interior is rapid compared to vertical transport (Munk & Wunsch 1998).
The stably stratified bottom thermal boundary layer in the experiments is analogous to
the ocean thermocline, the vertical plume represents the deep downwelling that occurs
in tightly confined locations near high-latitude boundaries, and the flow along the
top of our box represents the expected abyssal return flow in the oceans. Comparing
the shape of the vertical density profiles in the experiments and numerical solutions
to those in the oceans (figure 13a), we see substantial similarity, particularly in the
large thermocline stratification and very small abyssal density gradients. It is not
surprising that some aspects of the density structure are not identical, given that
we have not allowed for the different parameter values. In particular, and with the
present scaling, the abyssal density gradient in the tank is smaller than that in the
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Figure 13. Vertical profiles of (a) dimensionless density, ρ̂, and (b) the square of normalized
buoyancy frequency, N2/N2

0 , from an experiment (fine solid line), the corresponding numerical
solution (fine dashed line), and the oceans (bold lines). For easy comparison of shape, depth
has been normalized by the total depth D (z = 0 being the forcing boundary in each case).
The dimensionless density has been set to ρ̂ = 0 at the forcing boundary and ρ̂ =1 at the
opposite horizontal boundary and N2

0 = g	ρ/ρD, where 	ρ is the top-to-bottom density

difference. The ocean depth is taken to be 4000m, giving N2
0 = 7.41 × 10−6 rad2 s−2. In (a), the

laboratory curve is a horizontal average of vertical profiles taken at five locations along
the box, the numerical solution is a horizontal average over the box (run 3 in table 1), and the
ocean profiles are potential density averages over the northern hemisphere (bold dashed line),
southern hemisphere (bold dotted line) and global ocean (bold solid line). Ocean data comes
from the Levitus 1994 data set (http://iridl.ldeo.columbia.edu/SOURCES/.LEVITUS94/). In
(b), the laboratory and numerical profiles are taken at the centre of the box (x = 0.625m).
The temperature gradient outside the boundary layer was calculated by differentiating an
exponential fit to the data, while the gradient in the boundary layer was found by differencing
the data. This approach provides a reliable description of the data except at the edge of the
boundary layer where there is an artificial discontinuity in gradient. The ocean data is a global
mean and is taken from Peixoto & Oort (1992, p. 197).

oceans. The two-dimensional numerical solution gives a still smaller density gradient.
The abyssal gradient (figure 13b), though small compared to that in the boundary
layer, is dynamically important since it is required for the plume to penetrate through
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the full depth of the basin. This gradient also supports internal waves and influences
turbulence.

Application of the convective scaling of § 2 to the ocean predicts a thermocline
thickness (h ∼ 60 m) that is much smaller than the measured depth (∼1000 m), a
temperature difference (δT ∼ 13 ◦C) about half the observed value and a volume
flux (V ∼ 4 × 107 m3 s−1) that is somewhat larger than the estimated net poleward
flux of surface waters (of order 1 × 107 m3 s−1 in each hemisphere, Houghton et al.
1996, p. 212). Here, we have taken L =107 m, α = 2 × 10−5 K−1 in the deep cold
interior, a total heat flux of 2 × 1015 W in each hemisphere, giving an average surface
flux F

T
= 20 W m−2 at low latitudes, and the measured turbulent mixing coefficient

κ
T
= ν = 10−5 m2 s−1. Hence, the boundary-layer scaling of horizontal convection

apparently fails to describe the ocean thermocline. We note that the geostrophic
scaling leads to the dependence V ∼ κ2/3

T
and V ∼ δT 1/3, and a thermocline thickness

of order 100 m. This scaling is found to be consistent with the predictions of a class of
three-dimensional general circulation models (Park & Bryan 2000) (although another
GCM in which the thermocline thickness is allowed to vary with latitude yields the
diffusivity dependence V ∼ κ1/3

T
, Bryan 1987). On the other hand, we observe that the

boundary-layer thickness in figure 13 appears to scale with the total water depth.
The laboratory model is of most relevance to the dynamics of the deep circulation,

where buoyancy forces may drive sinking and dominate the equatorward abyssal flow.
The laboratory model demonstrates how the mass flux generated in the boundary
layer must be accommodated both in the sinking plume and in the interior. In
the latter, a Munk-like (1966) balance between vertical advection and diffusion is
required with interior diffusivity much greater than the molecular diffusivity. The
uptake of buoyancy is, however, governed by the molecular diffusivity because the
boundary-layer flow is characterized by low Reynolds number and bounded by a no-
slip surface. Were the molecular diffusivity (κ = κ

T
= 1.4 × 10−7 m2 s−1) also relevant

to uptake of buoyancy at the ocean surface, the dissipation prediction (1.1) implies
ε = 1 × 10−12 m2 s−3, using the measured difference of 3.1 kg m−3 between the average
bottom density and the average surface density, and an ocean depth of D =4000 m.
This value of ε is approximately 100–1000 times smaller than values observed in the
ocean interior. If the energy in the interior is to be supplied by buoyancy forcing
alone, this suggests that the diffusivity characterizing the uptake of buoyancy at the
ocean surface is 100–1000 times greater than the molecular value. This view is qualita-
tively consistent with the presence of a turbulent surface layer in the oceans (energized
primarily by winds) and measured upper-ocean vertical diffusivities of order 10−5−
10−4 m2 s−1. However, when the uptake is by molecular diffusion, we still predict levels
of abyssal turbulence comparable to that in the laboratory. Below a depth of 2000 m,
the buoyancy frequency Ni < 10−3 s−1, ν = 10−6 m2 s−1 and the ratio ε/νN 2

i > 1. This
value becomes larger if we use the smaller local values of Ni at greater depths, and is
similar to the laboratory value. A spatial variability of dissipation rates might again
locate most of the oceanic dissipation in the sinking plumes rather than in the interior.
However, both the similarity of the dimensionless volume-averaged dissipation rate
to that in the experiments and the coupling of ε with the rate of buoyancy uptake
(whether by molecular or turbulent processes) at the surface, suggest the possibility of
a steady-state ocean that can adjust the rate of buoyancy-driven abyssal mixing such
that the downward diffusive heat flux matches the cooling flux to the deep ocean in
the plume. This intriguing aspect of the flow will be expanded on in another article.

The observed sensitivity to initial conditions of the adjustment toward the final
equilibrium state reflects the fine balance required for the vertical plume to penetrate
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the full depth of the box. Thus, we speculate, as many other authors have done, that
changes in the ocean MOC resulting from changes in surface forcing might cause
a reduction in the penetration depth of the high-latitude sinking if the net surface
heat (or water) flux is such as to decrease the ocean surface density with time (e.g.
by adding fresh water). Barring further changes in boundary conditions there will be
an eventual return to full depth convection when the ocean has adjusted to make the
net heat and water fluxes vanish. However, the transient flow pattern can persist for
very long times, of the order of the diffusion time through a significant fraction of
the ocean depth. There is potential for further examination of transient adjustment
and cases with unsteady forcing.

Our experiments indicate that vertical convective mixing (which carries no net
vertical mass flux) in the boundary layer can deepen with distance toward the destabil-
ized end of the basin (increasing latitude in the oceans) until all of the (poleward)
mass flux in the boundary layer is involved. The inclusion of the full mass flux in the
mixed layer is a consequence of the vigour of the high-Rayleigh-number circulation, in
which heat transfer from the destabilizing boundary is dominated by convection rather
than conduction (with diffusion remaining dominant in the stably stratified region
of the boundary layer). In a steady mean thermal state, all of the cooled boundary
layer must be reheated by the time it reaches the plume. At the high-latitude end
of the box, the convection deepens very rapidly because it penetrates through the
full depth of the thermocline and into the much smaller interior gradient. At this
location, the horizontal flow also feeds into a bulk downwelling and, in the two-
dimensional non-rotating case, the ‘deep convection’ and downwelling are coincident.
Further experimental work will add Coriolis effects and examine the possibility of
separate sites for deep convection and downwelling in three-dimensional geostrophic
circulation.

We thank Tony Beasley and Chris Morgan for construction of equipment and
laboratory assistance, and Brad Ferguson for help with photography. The Australian
Partnership for Advanced Computing National Facility provided CPU time and we
thank Stuart Midgley for technical assistance with using the supercomputer.
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